Pengolahan Limbah Cair Batik dengan Elektrokoagulasi dan Filtrasi-Adsorbsi untuk Keberlanjutan
DOI:
https://doi.org/10.59110/rcsd.528Keywords:
Elektrokoagulasi, Limbah Cair Industri Batik, Pengolahan limbah tekstilAbstract
Limbah cair dari industri batik, terutama yang mengandung bahan kimia berbahaya seperti pewarna sintetik dan logam berat, menjadi masalah lingkungan yang signifikan di berbagai wilayah industri batik, termasuk Cilacap. Penelitian ini mengeksplorasi penerapan teknologi elektrokoagulasi sebagai metode pengolahan limbah batik, dengan fokus pada optimasi proses dan integrasi sistem filtrasi-adsorpsi. Proses elektrokoagulasi terbukti efektif dalam menurunkan parameter kualitas air, seperti BOD, COD, TSS, dan konsentrasi logam berat, seperti kromium, yang pada akhirnya memenuhi standar baku mutu yang ditetapkan oleh regulasi lingkungan (PERDA No. 5 Tahun 2012 Provinsi Jawa Tengah). Hasil penelitian menunjukkan penurunan signifikan pada BOD, COD, TSS, dan kromium, dengan penerapan sistem filtrasi-adsorpsi lebih lanjut meningkatkan efektivitas pengolahan. Penelitian ini memberikan kontribusi ilmiah yang signifikan dalam menawarkan solusi pengolahan limbah yang ramah lingkungan dan berkelanjutan untuk industri batik, dengan potensi adopsi yang lebih luas di tingkat global. Teknologi ini tidak hanya mengurangi dampak negatif limbah terhadap lingkungan tetapi juga memungkinkan limbah batik untuk diproses kembali menjadi produk berguna, seperti malam (candle wax). Temuan ini menunjukkan potensi penerapan teknologi elektrokoagulasi dan filtrasi-adsorpsi sebagai solusi inovatif untuk pengelolaan limbah industri batik secara global.
References
Ahmed, S. N., Al Khateeb, R. T., & Shreeshivadasan, C. (2018). Treatment of textile wastewater using a novel electrocoagulation reactor design. Global Nest Journal, 20(3), 449–457. https://doi.org/10.30955/gnj.002519
Aouni, A., Lafi, R., & Hafiane, A. (2017). Feasibility evaluation of combined electrocoagulation/adsorption process by optimizing operating parameters removal for textile wastewater treatment. Desalination and Water Treatment, 60, 78–87. https://doi.org/10.5004/dwt.2017.10890
Avsar, Y., Akif Kabuk, H., Kurt, U., Cakmakci, M., & Ozkaya, B. (2012). Biological treatability processes of textile wastewaters using electrocoagulation and ozonation. Journal of Scientific and Industrial Research, 71(7), 496–500. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863845505&partnerID=40&md5=6cc8664ea07269a48d9fd48e7e81fd27
Chantes, P., Jarusutthirak, C., Kanchanapiya, P., & Danwittayakul, S. (2015). Treatment of textile dyeing wastewater by electrocoagulation. Key Engineering Materials, 659, 284–288. https://doi.org/10.4028/www.scientific.net/KEM.659.284
Daud, N. M., Abdullah, S. R. S., Hasan, H. A., Ismail, N., & Dhokhikah, Y. (2022). Integrated physical-biological treatment system for batik industry wastewater: A review on process selection. Science of the Total Environment, 819. https://doi.org/10.1016/j.scitotenv.2022.152931
Fatimah, S., & Hidayati, N. (2018). The hybridization of bed layer and electrodegradation to remove the chemical oxygen demand and total solid solution from the batik dye wastewater. AIP Conference Proceedings, 2026. https://doi.org/10.1063/1.5065006
Ghanbari, F., Moradi, M., Eslami, A., & Emamjomeh, M. M. (2014). Electrocoagulation/flotation of textile wastewater with simultaneous application of aluminum and iron as anode. Environmental Processes, 1(4), 447–457. https://doi.org/10.1007/s40710-014-0029-3
Graça, N. S., & Rodrigues, A. E. (2022). The combined implementation of electrocoagulation and adsorption processes for the treatment of wastewaters. Clean Technologies, 4(4), 1020–1053. https://doi.org/10.3390/cleantechnol4040063
Hernanda, P. A., Sriyana, I., Ma’arief, S. A., & Amelia, S. (2024). Batik waste degradation using heterogeneous Fenton method using catalysts to reduce environmental pollution. E3S Web of Conferences, 481. https://doi.org/10.1051/e3sconf/202448103002
Hossain, M. M., Mahmud, M. I., Parvez, M. S., & Cho, H. M. (2013). Impact of current density, operating time, and pH of textile wastewater treatment by electrocoagulation process. Environmental Engineering Research, 18(3), 157–161. https://doi.org/10.4491/eer.2013.18.3.157
Hu, E., Shang, S., & Chiu, A. K.-L. (2019). Removal of reactive dyes in textile effluents by catalytic ozonation pursuing on-site effluent recycling. Molecules (Basel, Switzerland), 24(15). https://doi.org/10.3390/molecules24152755
Ibanez, J. G., Vazquez-Olavarrieta, J. L., Hernandez-Rivera, L., Garcia-Sanchez, M. A., & Garcia-Pintor, E. (2012). A novel combined electrochemical-magnetic method for water treatment. Water Science and Technology, 65(11), 2079–2083. https://doi.org/10.2166/wst.2012.108
Islam, S. M. D.-U. (2019). Electrocoagulation (EC) technology for wastewater treatment and pollutants removal. Sustainable Water Resources Management, 5(1), 359–380. https://doi.org/10.1007/s40899-017-0152-1
Naje, A. S., Chelliapan, S., Zakaria, Z., & Abbas, S. A. (2015). Enhancement of an electrocoagulation process for the treatment of textile wastewater under combined electrical connections using titanium plates. International Journal of Electrochemical Science, 10(6), 4495–4512. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930158250&partnerID=40&md5=fc73fdec84b5a321ba15cf48b8e2eeb2
Naje, A. S., Chelliapan, S., Zakaria, Z., & Abbas, S. A. (2015b). Treatment performance of textile wastewater using electrocoagulation (EC) process under combined electrical connection of electrodes. International Journal of Electrochemical Science, 10(7), 5924–5941. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84936804024&partnerID=40&md5=00f4cd3aa06cecc7b1f6087b6de9add5
Naje, A. S., Chelliapan, S., Zakaria, Z., & Abbas, S. A. (2016). Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment. Journal of Environmental Management, 176, 34–44. https://doi.org/10.1016/j.jenvman.2016.03.034
Ozyonar, F., Muratcobanoglu, H., & Gokkus, O. (2017). Taguchi approach for color removal using electrocoagulation with different electrode connection types. Fresenius Environmental Bulletin, 26(12), 7600–7607. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046115430&partnerID=40&md5=81c0d51c146bd2184003a09ba287a691
Pacheco, H. G. J., Elguera, N. Y. M., Mamani, M. R. A., Alvarez, N. P. L., & Almeida, V. C. (2023). Treatment of textile wastewater by electrocoagulation process assisted with biocoagulant obtained from the pitahaya peels. Desalination and Water Treatment, 283, 1–10. https://doi.org/10.5004/dwt.2023.29186
Paramita, A. P., Mirwan, A., Mu’minah, R., Purnawilda, A., & Irawan, C. (2023). Performance of electrocoagulation process for batik-modified Sasirangan textiles wastewater using aluminum electrode waste from furniture industry (Al6061-T6 type). AIP Conference Proceedings, 2902(1). https://doi.org/10.1063/5.0173439
Peraturan Daerah Provinsi Jawa Tengah. (2012). Peraturan Daerah (Perda) Provinsi Jawa Tengah Nomor 5 Tahun 2012 tentang Perubahan atas Peraturan Daerah Provinsi Jawa Tengah Nomor 10 Tahun 2004 tentang Baku Mutu Air Limbah.
Pratiwi, N. I., Sari, S. R., Arifan, F., Wulandari, A. T., Alkian, I., Mustasjar, B., & Aji, M. B. F. B. (2020). Batik Pemalang organic wastewater composition and simple electrocoagulation-filtration treatment. IOP Conference Series: Earth and Environmental Science, 448(1). https://doi.org/10.1088/1755-1315/448/1/012037
Putra, R. S., Annisa, A. D., & Budiarjo, S. (2020). Batik wastewater treatment using simultaneous process of electrocoagulation and electro-assisted phytoremediation (EAPR). Indonesian Journal of Chemistry, 20(6), 1221–1229. https://doi.org/10.22146/ijc.47898
Rahmadyanti, E., Wiyono, A., & Firmansyah, G. A. (2020). Integrated system of biofilter and constructed wetland for sustainable batik industry. International Journal of GEOMATE, 18(70), 138–148. https://doi.org/10.21660/2020.70.61681
Rakhimol, K. S., Anil, R., Varghese, R., Siby, S., Jose, E. A., & Thomas, T. (2024). Solar-powered unit with novel reversible inversion for sustainable electrocoagulation. Proceedings of International Conference on Circuit Power and Computing Technologies (ICCPCT 2024), 1199–1204. https://doi.org/10.1109/ICCPCT61902.2024.10673224
Saravanan, N., & Sasikumar, K. S. K. (2020). Wastewater treatment process using nano TiO2. Materials Today: Proceedings, 33, 2570–2572. https://doi.org/10.1016/j.matpr.2019.12.143
Sen, S., Prajapati, A. K., Bannatwala, A., & Pal, D. (2019). Electrocoagulation treatment of industrial wastewater including textile dyeing effluent – A review. Desalination and Water Treatment, 161, 21–34. https://doi.org/10.5004/dwt.2019.24302
Sharfan, N., Shobri, A., Anindria, F. A., Mauricio, R., & Tafsili, M. A. B. (2018). Treatment of batik industry waste with a combination of electrocoagulation and photocatalysis. International Journal of Technology, 9(5), 936–943. https://doi.org/10.14716/ijtech.v9i5.618
Sharma, L., Prabhakar, S., Tiwari, V., Dhar, A., & Halder, A. (2021). Optimization of EC parameters using Fe and Al electrodes for hydrogen production and wastewater treatment. Environmental Advances, 3. https://doi.org/10.1016/j.envadv.2020.100029
Suhartana, S., Purwanto, P., & Darmawan, A. (2019). Comparison of the effectiveness electrocoagulation of dye (batik wastewater) using iron and zinc as anodes. Journal of Physics: Conference Series, 1295(1). https://doi.org/10.1088/1742-6596/1295/1/012021
Tanveer, R., Yasar, A., Nizami, A.-S., & Tabinda, A. B. (2023). Integration of physical and advanced oxidation processes for treatment and reuse of textile dye-bath effluents with minimum area footprint. Journal of Cleaner Production, 383. https://doi.org/10.1016/j.jclepro.2022.135366
Utomo, B., Masykuri, M., Wanguyun, A. P., & Geraldi, A. (2019). The performance of batik wastewater treatment by electrocoagulation process under variations of electrodes. Ecology, Environment and Conservation, 25(July Suppl. Issue), S32–S36. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076206176&partnerID=40&md5=d920e93073f36ed168aa1c7890936463
Yasri, N., Hu, J., Kibria, M. G., & Roberts, E. P. L. (2020). Electrocoagulation separation processes. In ACS Symposium Series (Vol. 1348, pp. 167–203). https://doi.org/10.1021/bk-2020-1348.ch006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hendi Purnata, Saepul Rahmat, Novita Asma Ilahi, Nurlinda Ayu Triwuri, Artdhita Fajar Pratiwi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.